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We have a habit in writing articles published in scientific journals to make  
the work as finished as possible, to cover up all the tracks, to not worry  

about the blind alleys or describe how you had the wrong idea first,  
and so on. So there isn’t any place to publish, in a dignified manner,  

what you actually did in order to get to do the work.

—Richard P. Feynman
Nobel Lecture, 1966

Philip Russell led a team of researchers at the University Bath in the 1990s where photonic crystal fibers were 
drawn. Thin hollow capillary tubes were stacked together and then fused to make a preform as shown on the left. 
A photonic crystal fiber was then drawn at a high temperature from this preform. Photonic crystal fibers have 
the ability to guide light endlessly in a single mode, and have highly desirable nonlinear properties for various 
photonics applications in the manipulation of light, such as the generation of supercontinuum light. (Courtesy 
of Professor Philip Russell.)
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To Nicolette, who brightens my every day
and makes me smile with joy every time I see her.

Peter Schultz, Donald Keck, and Bob Maurer (left to right) at Corning were the first to 
 produce low-loss optical fibers in the 1970s by using the outside vapor deposition method  
for the fabrication of preforms, which were then used to draw fibers with low losses.  
(Courtesy of Corning.)
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Preface

The first edition of this book was written more than 12 years ago. At the time it was meant 
as an easy-to-read book for third-year engineering or applied physics undergraduate students; 
it  emphasized qualitative explanations and relied heavily on intuitive derivations. As things 
turned out, the first edition ended up being used in fourth-year elective classes, and even in 
graduate courses on optoelectronics. Many of the instructors teaching at that level rightly need-
ed better derivations, more rigor, better explanations, and, of course, many more topics and 
problems. We have all at one time or another suffered from how wrong some intuitive short-cut 
derivations can be. The second edition was therefore prepared by essentially rewriting the text 
almost from scratch with much better rigor and explanations, but without necessarily dwell-
ing on mathematical details. Many new exciting practical examples have been introduced, and 
 numerous new problems have been added. The book also had to be totally modernized given 
that much had happened in the intervening 12 years that deserved being covered in an under-
graduate course.

Features, Changes, and revisions  
in the seCond edition

The second edition represents a total revision of the first edition, with numerous additional fea-
tures and enhancements.

•	 All	chapters	have	been	totally	revised	and	extended.
•	 Numerous	modern	topics	in	photonics	have	been	added	to	all	the	chapters.
•	 There	are	Additional	Topics	that	can	be	covered	in	more	advanced	courses,	or	in	courses	

that run over two semesters.
•	 There	are	many	more	new	examples	and	solved	problems	within	chapters,	and	many	

more practical end-of-chapter problems that start from basic concepts and build up onto 
advanced applications.

•	 Nearly	all	the	illustrations	and	artwork	in	the	first	edition	have	been	revised	and	redrawn	
to better reflect the concepts.

•	 Numerous	new	illustrations	have	been	added	to	convey	the	concepts	as	clearly	as	possible.
•	 Photographs	have	been	added,	where	appropriate,	to	enhance	the	readability	of	the	book	

and to illustrate typical modern photonic/optoelectronic devices.
•	 The	previous	edition’s	Chapter	7	on	photovoltaics	has	been	incorporated	into	this	edition’s	

Chapter 5 as an Additional Topic, thus allowing more photonics-related topics to be covered.
•	 Advanced	or	complicated	mathematical	derivations	are	avoided	and,	instead,	the	emphasis	

is placed on concepts and engineering applications.
•	 Useful	and	essential	equations	in	photonics	are	given	with	explanations	and	are	used	in	

examples and problems to give the student a sense of what typical values are.
•	 Cross	referencing	in	the	second	edition	has	been	avoided	as	much	as	possible,	without	too	

much repetition, to allow various sections and chapters to be skipped as desired by the reader.
•	 There	is	greater	emphasis	on	practical	or	engineering	examples;	care	has	been	taken	to	

consider various photonics/optoelectronics courses at the undergraduate level across major 
universities.

v
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vi Preface

•	 The	second	edition	is	supported	by	an	extensive	PowerPoint	presentation	for	instructors	
who have adopted the book for their course. The PowerPoint slides have all the illustra-
tions in color, and include additional color photos. The basic concepts and equations are 
also highlighted in additional slides. There are also numerous slides with examples and 
solved problems. Instructors should contact the publisher to access the PowerPoint.

•	 The	second	edition	is	also	supported	by	an	extensive	Solutions	Manual	for	instructors	
only. This is available from the publisher.

The second edition continues to represent a first course in optoelectronic materials and 
devices suitable for a half- or one-semester course at the undergraduate level either at the third- 
or fourth-year level in electrical engineering, engineering physics, and materials science and 
engineering departments. With its additional topics, it can also be used as an introductory text-
book	at	the	graduate	level.	Normally	the	students	would	not	have	covered	Maxwell’s	equations.	
Although	Maxwell’s	equations	are	mentioned	in	the	text	to	alert	the	student,	they	are	not	used	
in developing the principles. It is assumed that the students would have taken a basic first- or 
second-year physics course, with modern physics, and would have seen rudimentary concepts in 
geometrical	optics,	interference,	and	diffraction,	but	not	Fresnel’s	equations	and	concepts	such	
as group velocity and group index. Typically an optoelectronics course would be given either 
after a semiconductor devices course or concurrently with it. Students would have been exposed 
to elementary quantum mechanics concepts, perhaps in conjunction with a basic semiconductor 
science course.

Most topics are initially introduced through qualitative explanations to allow the concept 
to be grasped first before any mathematical development. The mathematical level is assumed to 
include vectors, complex numbers, and partial differentiation but excludes reliance on Fourier 
transforms. On the one hand, we are required to cover as much as possible and, on the other 
hand, professional engineering accreditation requires students to solve numerical problems 
and carry out “design calculations.” In preparing the text, I tried to satisfy engineering degree  
accreditation requirements in as much breadth as possible. Obviously one cannot solve numeri-
cal problems, carry out design calculations, and at the same time derive each equation without 
expanding the size of the text to an intolerable level. I have missed many topics but I have also 
covered many, though, undoubtedly, it is my own very biased selection.

I would like to thank two very special colleagues, whom I have known for a very long 
time, for their comments and help: Harry Ruda (University of Toronto) and Raman Kashyap 
(École Polytechnique de Montréal)—two perfect gentlemen who read some of the manuscript 
and made valuable criticisms toward this final version.

No textbook is perfect and I can only improve the text with your input. Please feel free 
to write to me with your comments. Although I may not be able to reply to each individual 
comment and suggestion, I do read all my email messages and take good note of suggestions 
and comments. Many instructors did, in fact, write to me on the first edition, pointed out how 
things could have been done better, and various mistakes one never seems to be able to eliminate 
totally. I hope that the second edition will at least go far in satisfying some of their criticisms. 
There is an important old adage that goes something like this (somewhat paraphrased), “a good 
diagram is worth a thousand words, but a bad diagram takes a thousand words to explain.” I used 
a software package called Canvas to draw nearly all the line-art in the second edition as clearly 
as possible, and errors are all mea culpa; feel free to email me the errors you notice in the figures. 
All	third-party	artwork	and	photographs	have	been	used	with	permission;	and	I’m	grateful	to	

A01_KASA1498_02_SE_FM.INDD   6 18/09/12   6:45 PM



 Preface vii

Pearson Education for meticulously obtaining permission from copyright holders. If you like 
the second edition, and cannot wait for the third, you can always write your comments and 
recommendations directly to the Sponsoring Editor for Electrical Engineering, Pearson Higher 
Education, One Lake Street, Upper Saddle River, NJ 07458, USA. This is the best way to have 
your input heard.

Safa Kasap
safa.kasap@yahoo.com

Saskatoon (March 2012)

Gordon Gould (1920–2005) obtained his BSc in Physics (1941) from Union College in Schenectady and MSc 
from Yale University. Gould came up with the idea of an optically pumped laser during his PhD work at Columbia 
University around 1957—he is now recognized for the invention of optical pumping as a means of exciting masers 
and lasers. He has been also credited for collisional pumping as in gas lasers, and a variety of application-related 
laser patents. After nearly three decades of legal disputes, in 1987, he eventually won rights to the invention of 
the	laser.	Gould’s	laboratory	logbook	even	had	an	entry	with	the	heading	“Some	rough	calculations	on	the	fea-
sibility of a LASER: Light Amplification by Stimulated Emission of Radiation,” which is the first time that this 
acronym appears. Union College awarded Gould an honorary Doctor of Sciences in 1978 and the Eliphalet Nott  
Medal in 1995. (Courtesy of Union College Alumni Office.)
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viii Preface

Fiber-coupled phase and amplitude modulators. The Pockels effect in lithium niobate is used to modulate 
the refractive index and hence the phase of an optical signal. In amplitude modulators, the Pockels effect 
is used to modulate the refractive indices of the two arms of a Mach–Zehnder interferometer, and hence 
the optical output. (© JENOPTIK Optical System GmbH.)

Fiber-coupled optical isolators: fiber isolators. The signal is allowed to propagate in one direction only, 
along the arrow shown on the device. The principle is based on Faraday rotation. (Courtesy of Thorlabs.)
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New Imaging Technologies (NIT), France)
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