INDEX

A

Absorption, 43
coefficient, 44, 372
graph vs. wavelength, 373
indirect, 374
lattice, 145
Acceptance angle, fibers, 117
Acceptors in semiconductors, 189
Acousto-optic effect, 476
figure of merit and table, 481
Acousto-optic modulator, 477, 481
Bragg regime and diffraction, 479, 495
Raman–Nath regime, 477
Active Matrix Array, 417–418
Active pixel sensor, 418
Air mass, 426
Airy, George, 58, 91
Airy rings, 58, 59, 61
Alloys, semiconductors
III-V alloys, 237, 257
III-V bandgap diagram, 155
III-V ternary alloys, 237
Amorphous structure broadening, 305
Amplified spontaneous emission (ASE), 285, 287
Amplifier, see Optical amplifier
Anisotropy, optical, 11, 446, 447
refractive index, 11, 445
table of crystals, 446
Antireflection coating (AR), 39–40, 365, 421
Argon-ion laser, 359
Attenuation, 43
coefficient, 43, 143
optical fibers and dB, 143–151
table for fibers, 147
vs. bend radius, 150
Avalanche, 387
breakdown voltage, 388
multiplication factor, 388
noise, 414
Avalanche photodiode (APD), 386
absorption region in APD, 393
guard ring, 388
internal gain, 388
noise, 414
photogeneration, 393
primary photocurrent, 388, 390
principle, 401
responsivity of InGaAs, 390
separate absorption
and multiplication (SAM), 393–395
grading and multiplication (SAGM), 393
Si reach-through, 386
silicon, 390
superlattice, 395

B

Bandgap, energy gap, 182
III-V bandgap diagram, 257
Bandwidth, 130
optical, electrical, 134–135
Bandwidth theorem, 49
Bardeen, John, 178
Bayer color image sensor, 417
Beam
circular cross-section, 176
diameter, 7
displacement, see Lateral displacement of light
divergence, 8
Gaussian, 62–63, 289, 292
light, 6
self-focused, 496
splitter cube, 35
Becker, P. C., 276, 463
Bending losses, 148
Bennett, William Jr., 290
Biaxial crystals, 446
Birefringence, 445
calcite, 450
circular, 456
induced, 464
quartz, 453
Birefringent
circularity, media, 458
crystal, 445
optical devices, 452
prisms, 456
retarding plates, 452
Bit rate, 130, 135
capacity, 130
intersymbol interference, 131
nonreturn-to-zero (NRZ), 135
return-to-zero (RZ), 131
Black body radiation law, 271
Bloch wave in a crystal, 78, 195
Boundary conditions, electromagnetism, 26, 27
Bragg angle, 479
Bragg diffraction condition, 67, 260, 285, 495
Bragg fibers, 159–160
gratings and sensors, 163–167
Bragg reflector, 41
Bragg wavelength, 163, 339
Bragg, William Lawrence, 65, 67
Brewster angle, 29, 30
reflection and transmission, 37–38
Brewster, David, 29
Brewster window, 289, 303
Broadening
amorphous structure, 305
collision, 304
homogeneous, 304
inhomogeneous, 305
lifetime, 304
Index

Broadening (continued)
- optical gain curve, 303
- pressure, 304
- Burus device, 247

C
- Calcite, 446, 450
 - principal section, 450
 - rhomb, 450
 - specific rotary power, 457
- Carrier confinement, 315
- Cavity lifetime, 300–301, 337
- Centrosymmetric crystals, 463
- Charge-coupled device (CCD), 419–421
 - Frame architecture, 420–421
 - full frame architecture, 420–421
 - Interline transfer architecture, 420–421
- Chirp, chirping, 158, 496
- Chromatic dispersion, 125–126
- Cladding, 95
 - attenuation, 102
 - layers, 247
- Coefficient of index grading, 137
- Coherence
 - length, 48
 - mutual temporal, 50
 - perfect, 47
 - spatial, 47, 50
 - temporal, 47
 - time, 48
- Collision broadening, 304
- Compensation doping, 190
- Complementary metal oxide semiconductor (CMOS)
 - sensor, 416, 417
- Complex propagation constant, 44
- Complex refractive index, 45
 - of InP, 46–47
- Complex relative permittivity, 44
- Conduction band (CB), 182, 196
 - electron concentration, 188
- Conductivity, semiconductors, 188
- Confining layers, 238, 247
- Conjugate image, 356
- Constructive interference, 52
- Coupled waveguides, 473
- Coupling coefficient, 165
- Cross-phase modulation, 158
- Crystal momentum, 196
- Current-Voltage Convention, 369–370

D
- Degenerate semiconductor, 191
- Dense wavelength division multiplexing (DWDM), 156
 - nonlinear effects, 157–159
- Density of states (DOS), 180
 - effective, 185
- Depletion region (layer), 199, 365
 - capacitance, 211, 380
- Depth of focus, 8
- Destructive interference, 52
- Desurvire E., 276
- Detectivity, 411
- Dichroism, 451
- Dielectric mirrors, 40, 42, 344
- Diffraction, 58
 - Fraunhofer, 58, 59
 - Fresnel, 58
 - diagram, 59
 - order, 339
 - pattern, 58
 - circular aperture, 62
 - rectangular aperture, 61
 - single slit, 60
 - principles, 58
- Diffraction grating, 64
 - blazed (echelle), 67
 - reflection, 65
 - transmission, 65
- Diffraction grating equation, 65
 - single slit, 61
- Diffusion (storage) capacitance, 214
- Diffusion current, 204
- Diffusion flux, 203
- Diffusion length, 203
- Diode equation, 208
- Diode ideality factor, 208
- Direct recombination, 215
- Dispersion, 125, 135
 - bandwidth relations, 135
 - chromatic, 140, 162
 - coefficients, 140
 - diagram, 104
 - graph of ω vs. β, 106
 - intermode, intermodal, 105, 110
 - intramode, intramodal, 106
 - material, 107, 119, 124, 171
 - coefficient, 120
 - graph vs. wavelength, 121
 - modal, 104, 105
 - polarization mode, 123
 - profile, 123, 172
 - profile-coefficient, 103
 - relation, 12
 - single mode fiber, 119
 - table, 128
 - total, 121, 125
 - vs. wavelength, 121, 125, 127
- Dispersive medium, 16
- Distributed Bragg reflector, 165, 241, 338, 344
- Donors in semiconductors, 190
- Doppler broadened linewidth, 291, 293
- Doppler effect, 290
- Doppler shift, 480
- Double-heterostructure (DH), 226
 - active layer, 315–316
 - buried, 318
 - contacting layer, 317
 - device, 315
- Drift mobility, 188, 381
- Drift velocity, 255, 381–382
 - graph vs. field, 382
Index 521

E
EDFA, see Erbium doped fiber amplifier
Effective density of states, 185, 186
Effective mass, 183
Efficiency
detector, 375
fiber coupling efficiency, 261
He-Ne laser, 290
laser diode external power, 327
laser diode slope, 327
optical amplifier, 279
quantum efficiency, 327
external, 324, 376
external differential, 327
internal, 261, 328
Einstein coefficients, 270, 271
E vs. k diagrams, 194
direct bandgap, 196
indirect bandgap, 197
Electrical bandwidth of fibers, 130, 133, 253
Electromagnetic (EM) wave, see Wave
Electron affinity, 182
Electron ionization coefficient, 391–392
Electro-optic effects, 462
Kerr, 469
linear, Pockels, 463
Energy band, 179, 180
Energy band diagram, 180, 192, 367, 369
field applied, 192
GaAs laser, 361
heterojunction, 226, 317
pn junction, 220
Energy level, 179
long-lived, 277
Epitaxial growth, 238
Erbium doped fiber amplifier (EDFA), 276, 283
characteristics, efficiency and gain saturation, 280
energy diagram, 277
gain-flattened, 284–287
Excess carrier distribution, 215
External photocurrent, 370–372
time spread, 372
External quantum efficiency (EQE), 242
Extinction coefficient, 45
Extraction efficiency (EE), 243
Extraordinary wave, 447
Extrinsic semiconductors, see Semiconductors

F
Fabry, Charles, 53
Fabry–Perot interferometer, 68, 69
Fabry–Perot laser amplifier, 348
Fabry–Perot optical resonator, 54, 292
transmitted light, 56
Fall time, 253
Faraday effect (rotation), 483, 495
Faraday, Michael, 107
Fermi–Dirac function, 179, 181, 184, 228, 313
Fermi energy, 179, 187
Fermi level, 185, 186
Fiber, see Optical fibers
Fiber Bragg grating (FBG), 163
Fill factor (FF), 424; see also Solar cell
Finesse, 56
First Brillouin zone, 78
Flat-band voltage, see Reach-throw voltage
Four-level laser system, 269–270
Four photon mixing, 157
Franken, Peter A., 486
Franck–Condon principle, 249
Fraunhofer, Joseph, 59
Free carrier absorption, 255
Free spectral range, 54
Fresnel, Augustin Jean, 1
Fresnel prism, 492
Fresnel’s equations, 26, 27, 88
Fresnel’s optical indicatrix, 447
Full width at half maximum, see FWHM
Full width at half power, see FWHP
FWHM, 131
of a gas laser, 291
FWHP, 131

G
Gabor, Dennis, 354
Gain coefficient in Nd+3 doped glass fiber, 275
Gain saturation, 282
Gaussian beam, 21, 83, 292, 302
power and irradiance, 21
Gaussian broadening, 305
Gaussian dispersion, 134–135
Gaussian pulse, 133
Glaz–Focault prism, 492
Glass preform, 154
Goos Haenchen phase shift, 88
Graded index fiber, 136–141; see also Optical fiber
dispersion and bit rate, 141
properties – table, 140
Graded index (GRIN) rod lens, 135, 139, 248
Group delay, 120
Group index, 14
graph vs. wavelength, 15
Group velocity, 15, 104, 114–115, 169

H
Half-wave plate retarder, 453
quartz, 453
Half-wave voltage, 466
Helical ray path, 108, 137
Helium-Neon laser, 287, 299, 301
characteristics – table, 358
efficiency, 290
energy diagram, 288, 358
modes, 291
principle of operation, 288
Herriot, Donald, 290
Heterojunction, 222
photodiodes, 393
phototransistor, 402
Heterostructure, 225, 226
device, 226, 245, 317, 321, 348
High (strong) injection, 214–216, 256
Index

Hole, 183

diffusion current, 203
diffusion length, 203
ionization coefficient, 391

Holey fiber, 160; see also Photonic crystal fiber

Hologram, 354

Holography, 354, 356

Homogeneous broadening, 304

Homojunction, 224, 313

Huygens, Christiaan, 440

Huygens-Fresnel principle, 59–60

Image sensors, 415–421
	pixels, 415

Impact-ionization, 387

Index matching, 487

Induced transition, see Stimulated emission

InGaAsP on InP substrate, 319

Inhomogeneous broadening, 305

Injection, 201

of excess minority carriers, 201

pumping, 313

strong, 215

weak, 215

Instantaneous irradiance (intensity), 19

Integrated optics, 470

Intensity of light, 21, 32

Interference, 51

incoherent, 73

Interference fringes, 71

Interferometers, 68–70

Internal quantum efficiency (IQE), 242

Intersymbol interference, 131

Intrinsic concentration ni, 186, 189

Intrinsic semiconductors, see Semiconductors

Irradiance, 18, 19

reflected light, 32

Isoelectronic impurities, 237

Isotropic, 11

J

Javan, Ali, 290

Jones matrices, 490

Jones units, 411

Jones vector, 490

K

Kao, Charles, 94

Kerr coefficients – table, 469

Kerr effect, 468–470

Kerr effect modulator, 470

Kerr, John, 462

Kramers-Kronig relations, 46

L

LASER, 265, 266–269; see also Laser diode

active medium, 289

active region, 312, 318

amplifiers, 348

distributed Bragg reflection (DBR), 338–339

distributed feedback (DFB), 338, 339

efficiency of the He-Ne, 290

gain guided, 318

gas, 287

modes, 292

He-Ne, 287, 299

characteristics – table, 358

efficiency, 290

principle of operation, 288

modes, 292, 294, 301, 302

multiple quantum well (MQW), 322

Nd\(^{3+}\):YAG laser, 269

optical cavity, 268, 287, 297

oscillation conditions, 295

oscillator, 298

output spectrum of a gas, 290

output wavelength variations, 330

principles, 266

ruby laser, 267

semiconductor, 348

single frequency solid state, 338

guiding layer, 339

threshold gain, 296

vertical cavity surface emitting (VCSE), 344

Laser diode (LD)

active region, 318

buried heterostructure, 319

characteristics, 324

corversion efficiency, 328

direct modulation of, 351–354

distributed Bragg reflector (DBR), 338

distributed feedback (DFB), 339

divergence of output, 325

double heterostructure, 332

edge emitting, 318

equation, 332

external cavity, 342

external power efficiency, 362

Fabry-Perot, 318

gain guided, 318

heterostructure, 315

homojunction, 315

index guided, 319

inversion layer, 312

modes, 320

modulation, 351

principles, 311

rate equations, 332

single frequency, 338

single mode, 319

slope efficiency, 327

stripe geometry, 317

transient response, 352

delay time, 353

relaxation oscillation, 352

tables, 329, 340

threshold current, 314, 315

transparency current, 314

vertical cavity, surface emitting, 344

Lasing emission, 267

Lateral displacement of light, 25

Lattice vibrations, 495

LED, see light emitting diode, LED

Lifetime broadening, 304

Light absorption, 43
Light emitting diode, LED, 179, 224
 active region, 247
 AlGaAs, 256
 characteristics, 245–246
 cut-in voltage, 245
 edge emitting (ELED), 247–248, 261
 efficiencies and luminous flux, 242–244
 electronics, 251–253
 energy band diagram, 224
 external quantum efficiency (EQE), 242
 fiber coupling efficiency, 261
 for optical communications, 251
 heterojunction, 246
 high intensity, 233
 internal quantum efficiency (IQE), 242
 linewidth, 226, 229
 luminous efficacy, 244
 materials, 237–238
 optical fiber communications, 246–248
 output spectrum, 246
 phosphors and white, 249–251
 power conversion efficiency, 243
 principles, 224
 structure, 238–241
 superluminescent and resonant cavity, 350–351
 surface emitting (SLED), 247, 261
 turn-on voltage, 145
 wavelengths, 241
 white, 249
 Lineshape function, 296
 Linewidth, 124
 Liquid crystal display (LCD), 458–462
 twisted nematic field effect, 459
 Lithium niobate (LiNbO3)
 acousto-optic, 476
 phase modulator, 471, 493
 Pockels effect, 463
 properties, 447
 Load line, 424
 Longitudinal axial modes, 302
 Lorentzian lineshape, 304
 Loss coefficient, 297
 Luminescence, 249
 Luminosity function, 243
 Luminous
efficacy of light source, 244
 flux, 243

M
 Mach–Zehnder interferometer, 69
 Mach–Zehnder modulator, 70, 473
 Macro bending loss, 148
 Magneto-optic effects, 483
 Magneto-optic isolator, 495
 Magneto-optic modulator, 495
 Maiman, Theodore Harold, 363
 Majority carriers, 190
 Malus’s law, 444
 Mass action law, 186
 Matrix emitter, 347
 Maximum acceptance angle, 117
 Maxwell’s wave equation, 6, 10
 Mean thermal generation time, 210
 Meinel and Meinel equation, 438
 Metalsemiconductor-metal (MSM) structure, 400
 photodiodes, 400
 Meridional ray, 108–109, 137
 Micro bending loss, 148
 graph vs. bend radius, 150
 Microlaser, 347
 Midwinter, John, 34
 Mie scattering, 76
 Minority carriers, 190
 diffusion, 203
 diffusion length, 377
 Modal index, 163
 Mode
 cavity, 55, 292, 314
 coherently coupled, 340
 field diameter (MFD), 112
 hop in lasers, 326
 intensity of transmitted, 57
 linearly polarized, 109
 number, 99, 292
 of propagation, 99
 resonator, 57
 TE, 100, 168–169, 303
 TM, 100, 168–169, 303
 transverse, 303
 Mode field diameter (MFD), 112–113
 Mode locking, 310–311
 Modulated directional coupler, 476
 Modulation of light, 441–497
 Monochromatic wave, 14
 MQW, see Multiple quantum well (MQW)
 Multimode fiber, 112
 Multiple interference, 61
 Multiple quantum well (MQW), 236, 322
 Multiple reflections
 in plates and incoherent waves, 73–74
 thin films, 70
 Multiplication region, 393
 Mutual temporal coherence, 51

N
 Natural broadening, 304
 Negative absolute temperature, 272
 Net round-trip optical gain, 297
 Noise
 current, 409
 equivalent power (NEP), 410
 NEP graph, 412
 excess avalanche, 437
 excess, 387
 noise figure, 286
 in an APD, 414
 in photodetectors, 408
 of an ideal photodetector, 412
 photon noise, 409
 quantum, 409, 413
 shot, 409
 Noncentrosymmetric crystals, 463
 Nondegenerate semiconductors, 191
 Nonlinear optics, 485
 Nonlinear effects, 157, 462, 486
 Non-thermal equilibrium, 272
Normalized frequency, 100, 110
Normalized index difference, 108, 110
Normalized propagation constant, 114
Normalized thickness, 100
Numerical aperture, 117, 118, 138

Optical activity, 456, 484
dextrorotatory, 457
levorotatory, 457
Optical amplifier, 267
erbium doped fiber amplifiers (EDFA), 276
semiconductor optical amplifier, 348
table, EDFA, 286
Optical anisotropy, 445–446
Optical bandwidth, 130, 134, 252
Optical cavity, 272, 287
intensity, 55
maximum intensity, 55
modes, 54
in lasers, 301
resonant frequencies, 54, 314
Optical divergence, 7
Optical confinement, 315
Optical fiber, 95
all wave fiber, 146
attenuation, 142, 144
cutoff wavelength, 111
doubly clad, 127
dispersion flattened, 127
dispersion shifted, 122
drawing, 152–155
schematic, 152
fundamental mode, 109
graded index, 135–142
light emitters, 246
MAC number, 150
manufacture, 152
laydown stage, 153
multimode, 111, 118, 170
nonzero dispersion shifted, 127
propagation constant, 114
propagation of light, 109
reduced slope, 126
sensor, 166
single mode, 111, 112, 115, 170
single mode cutoff, 111
step index, 107
types of, 127
V-number, 109
zero dispersion shifted, 126
Optical fiber amplifier, 276
erbium ion doped, 276
gain efficiency, 281
Optical field, 4
Optical frequencies, 11
Optical gain, 267, 275, 291
coefficient, 295–296
lineshape, 291
net round-trip, 297
threshold, 297
Optical indicatrix, 448
Optical isolator, 484
Optical laser amplifiers, 348
Optical modulators
coupled waveguide, 473
integrated, 470
intensity, 467
Kerr effect, 470
Mach–Zehnder, 473
Pockels cell, 468
Optical pumping, 267–268
Optical resonator, 53
Optical tunneling, 33, 34
Optically isotropic, 11, 445
Optic axis, 446
Optimal profile index, 138
Output power and photon lifetime in the cavity, 299–300
Output spectrum
LED, 226
gas laser, 290
laser diode, 315, 326–327
white LED, 249
Outside vapor deposition, 152, 153, 154
schematic, 153
Passive pixel sensor, 418
Penetration depth, 31, 373
Perot, Alfred, 53
Phase change, 28
in TIR, 30, 34
Phase condition in lasers, 301
Phase matching, 487
Phase matching angle, 487
Phase mismatch, 475
Phase modulation, 470
Phase modulator, 465
LiNbO3, 468
Phase of a wave, 3
Phase velocity, 5
Phonon, 197, 375, 495
energy and momentum, 375
Phosphors, 249
Photoconductive detectors, 402
Photoconductive gain, 402
Photoconducitivity, 404
Photocurrent, 366, 369, 422
Photodetection Modes, 367–369
Photodetector, 365
neutral region, 366
quantum efficiency, 375
Shockley–Ramo theorem, 372
responsivity, 375
Photodiode, 365, 383
circuits, 405–408
materials, 373
photocurrent, 370
pn junction, 365
diagram, 366
responsivity, 375
space charge layer (SCL), 366
spectral responsivity, 375
table, 373
Photoelastic effect, 159, 476
Photogeneration, 366–367
Photon amplification, 265–266
Photon cavity lifetime, 300; see also Cavity lifetime
Photon confinement, 319
Photon flux, 242
Photon lifetime, see Cavity lifetime
Photonics bandgap, 77, 78
guided, 162
Photonic crystal fiber (PCF), 160–163
Photonic crystals, 76–82
Phototransistor, 401
heterojunction, 402
Photovoltaic devices, see Solar cell
Photovoltaic mode of operation, 370
Piezoelectric effect, 482
pin photodiode, 379, 380
characteristics – table, 389
junction capacitance, 381
NEP of a Si, 412
photocarrier diffusion, 383
response time, 381
responsivity, 384
speed, 383
steady state photocurrent, 385
transient photocurrents, 432
transit time, 381
Pixel image sensor, 418
Planck’s radiation distribution law, 271
pin junction, 198
band diagram, 318
graph, 319
built-in field, 200
built-in potential, 200, 201
current density, 210, 132
depletion region, 199
diffusion (storage) capacitance, 214
direct bandgap, 136
dynamic (incremental) resistance, 213
energy band diagram, 220
forward bias, 205, 210
currents, 206
diagram, 201
recombination current, 206
law of the junction, 202, 204
metallurgical junction, 198
properties – graph, 198
reverse bias, 209, 220
diagram, 209
total current, 210
reverse saturation, 210
space charge layer (SCL), 199, 211
Pockels cell modulator, 468
longitudinal, 465
transverse, 465
Pockels coefficients – table, 469
Pockels effect, 462
transverse, 465
Pockels, Friedrich Carl Alwin, 463
Pockels phase modulator, 465
Point defect, 81
Polarization
angle, 29; see also Brewster angle
anisotropic, 491
circular, 442
right, 242
dispersion, 122
dispersion effects, 122
elliptical, 443
induced, 486
linear, 443
modulation, 470
modulator, 466
of EM wave, 441, 444
state, 441
Polarization transmission matrix, 490
Population inversion, 265, 272, 312
threshold, 297
Poynting vector, 18–22
Preform, 152
Pressure broadening, 304
Prism, 25, 44
birefringent, 455
Profile effects–fibers, 122
Profile index, 137
optimal, 137
Propagation constant, 3, 114
complex, 44
Propagation vector, 5
Pseudo photonic bandgap (PBG), 79
Pulsed Lasers, 307–311
Pumping, 267, 280
erbium doped fiber amplifier (EDFA), 280
gas discharge (collision), 288
injection, 313
Pyroelectric detectors, 365
Q
Q-Switching, 307–309
Quantum efficiency, 375
detector, 375
external differential, 327
external, 327, 375
internal, 242, 328
Quantum noise, 409
Quantum well, 233
devices, 233
GaAs, 323–324
high intensity LEDs, 233–236
laser diode, 321
Quaternary alloy, 237
Quarter-wave plate retarder, 453
Quartz, 446, 453
Radiant flux, 242
Radiant sensitivity, 376
Raman–Nath regime, 477
Ramo’s theorem, see Shockley–Ramo theorem
Rate equations, laser diodes, 332
Rayleigh criterion, 63
Rayleigh range, 8
Rayleigh scattering, 75
Rayleigh, John William Strutt, 75
Rayleigh scattering limit, 146
Reach-trough voltage, 400
Real image, holography, 355, 356
Recombination, 183
center, 197
current, 208
direct, 214
direct capture coefficient, 215
indirect, 216
Recombination lifetime, 214
definition, 214
excess minority carrier, 215
mean, 206
weak injection, 215
Reflectance, 32, 55
bandwidth, 41
at normal incidence, 32
Reflection
amplitude, 26
at normal incidence, 30, 33
coefficients, 27
graph, 31
external, 30, 36
at normal incidence, 30
frustrated total internal, 34, 35
internal, 30, 36
graph, 29
multiple reflections, 70
and transmission at the Brewster angle, 37
total internal, 22, 23, 24, 30, 34
Reflected light, 22
from a less dense medium, 35
Refractive index, 11
complex, 45
dispersion, 10
field induced change, 462
graph vs. wavelength, 11
nonlinear, 158
optical crystals, 446
table, 12
Resolving power
angular limit of resolution, 63
diffraction grating, 66
imaging systems, 63
Response time, 381
Responsivity, 376
graphs, 377, 382
table, 389
Reststrahlen absorption, 46
Retarding plates, 452
Return-to-zero (RTZ) data rate, 131
Rise time, 253

Saturation drift velocity, 384
Scattering
anisotropic, 491
light, 145, 297
Rayleigh, 74, 75
Schottky barrier height, 398
Schottky-junction photodetector, 397–400
SCL, see Space charge layer, 199
Second harmonic generation, 485
Self-phase modulation, 158
Sellmeier and Cauchy coefficients, 13
Sellmeier dispersion equation, 13, 83
Semiconductors, 179–197
charge neutrality, 199
compensation doping, 190
conductivity, 188
degenerate, 191
direct bandgap, 194–197, 216
extrinsic, 187
III-V compound, 257
indirect bandgap, 194, 197
intrinsic, 186
non-degenerate, 185, 191
n-type, 187
optical amplifier, 348–349
p-type, 187
rate equations, 332
statistics, 184
Shockley–Ramo theorem, 370, 372
Shockley equation, 204
Shot noise, 409
Shunt resistance, 407
Side mode suppression ratio, 339
Silica (SiO\textsubscript{2})
Germania (SiO\textsubscript{2}-GeO\textsubscript{2}), 85, 153
refractive index, 16, 85, 153
Signal to noise ratio (SNR), 286, 410
of a receiver, 413
Simpson, J. R., 276
Single frequency lasers, 338
cleaved coupled cavity, 340
distributed Bragg reflection (DBR), 338
distributed feedback (DFB), 339
Single-mode fiber, 112
Single quantum well (SQW), 321
energy levels, 321
laser, 321
Skell’s law, 108
Snell’s law, 22–25
Snell, Willebrord van Roijen, 22
Solar cell, 421–428
antireflection coating, 39
equivalent circuit, 425
properties – table, 426
Solar constant, see Air-mass
Soleil–Babinet compensator, 454, 455
Solid state photomultiplier, 396
Space charge layer (SCL), 199; see also
Depletion region
width and voltage, 212
Specific rotatory power, 457
Spectral hole burning, 307
Spectral intensity, 258
Spectral responsivity, 376
Spectral width, 56, 57
of a wave train, 48
Spontaneous emission, 266
Spot size, 7
SQW, see Single quantum well (SQW)
Step-index fibers, 107–116
Stimulated Brillouin scattering (SBS), 158
Stimulated emission, 265, 266
rate, 270
Stokes shift, 250
Stop band, 41
Strong injection, see High injection
Superlattice, 395
Superposition of waves, 51
T
Tandem solar cell, 427
Terminal capacitance, 407
Ternary alloy, 237
Thermal equilibrium, 271
Thermal generation, 183
in SCL, 210
Thermal velocity, 186
Thin films
multiple reflections, 70
optics, 70, 72–73
Three-level laser system, 267
Threshold concentration, 333
Threshold current, 326, 237, 334
Threshold wavelength, 372
Total acceptance angle, 117, 118
Total internal reflection, 30, 33, 34
critical angle, 24
Townes, Charles D., 272
Transfer distance in coupled waveguides, 474
Transit time, 381
Transmission axis, 444
Transmission coefficient, 26–28
Transmittance, 32
at normal incidence, 33
Transverse electric field (TE), 26
Transverse magnetic field (TM), 26
Trench fiber, 150
Truncated spherical lens, 247
Turbidity, 76
Twisted nematic liquid crystal cell, 459
Tyndall, John, 107
U
Uniaxial crystals, 446
negative, 446
optic axis, 446
positive, 446
Unpolarized light, 29
V
Valence band (VB), 182
hole concentration, 186
Verdet constant, 483
table, 485
Vertical cavity surface emitting laser (VCSEL), 344
Virtual image holography, 354, 355
Visibility function, 243
V-number, 100, 102, 104
V-parameter, 100
W
Waist, beam, 7
radius, 7
Wave
circularly polarized, 442, 453
diverging, 6
electromagnetic, 3
electronically polarized, 443
ergy density in an EM, 18
evanescence, 24, 31
attenuation, 31
extraordinary, 447
fields in an EM, 18
linearly polarized, 29, 109, 276
monochromatic plane, 3
ordinary, 447
plane electromagnetic, 3
plane-polarized, 441
sinusoidal, 48
spherical, 7
stationary or standing EM, 54
Wave equation, 4, 6
Wavefront, 3
Gaussian light beam, 8
Wavefront reconstruction, 356
Wavelength division multiplexing (WDM), 155
Waveguide, 95
coupling, 95–99
cutoff wavelength, 100
dielectric, 95–167
dispersion, 104–107, 125, 171
coefficient, 121
diagram, 104
modes, 101
mode determination, 102
multimode, 100
planar, 104
propagation constant, 97
single mode, 100
symmetric dielectric slab, 95
diagram, 96
possible modes, 98
propagation constant, 98
transverse propagation, 97
Wavelength division multiplexing
Index

- Wave number, 3
- Wave packet, 14
- Wave vector, 5
- surface, 449
- Weakly guiding fiber, 109
- Wire grid polarizer, 491
- Wollaston prism, 455, 456, 492
- Wood, Robert William, 66
- Young’s two slit experiment, 52

I don’t really start until I get my proofs back from the printers. Then I can begin serious writing.

—JOHN MAYNARD KEYNES (1883–1946)
